Gene expression profiling of inflamed human endothelial cells and influence of activated protein C.
نویسندگان
چکیده
BACKGROUND During systemic inflammation, activation of vascular endothelium by proinflammatory cytokines leads to hypotension, microvascular thrombosis, and organ damage. Recent data suggest a link between coagulation and inflammation through the activated protein C (APC) pathway. We studied gene expression profiles in human coronary artery endothelial cells (HCAECs) exposed to proinflammatory stimuli and the influence of APC on expression of candidate genes regulated by these stimuli. METHODS AND RESULTS HCAECs were stimulated with interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha. In gene expression profiling, 400 of 8400 genes were regulated >2-fold. Verification of selected candidate genes was achieved by measuring expression of mRNA species by real-time polymerase chain reaction, cytokine secretion by ELISA, and metabolites of tetrahydrobiopterin (BH4) biosynthesis by high-performance liquid chromatography. BH4 synthesis, interleukin-6, interleukin-8, monocyte chemotactic protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) were downregulated by APC at the transcriptional and protein level. Endothelial nitric oxide synthase, endothelial adhesion molecule, and vascular cell adhesion molecule-1 were not affected by APC. Activities of transcription factors c-Fos, FosB, and c-Rel were inhibited by APC in inflamed HCAECs. CONCLUSIONS Our study revealed a novel antiinflammatory mechanism of APC-dependent gene regulation in HCAECs since c-Fos-dependent induction of MCP-1 and ICAM-1 was suppressed. APC downregulates expression and activity of genes related to inflammation, most pronounced under intermediate or mild inflammatory conditions.
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملIdentification of diagnostic biomarkers by bioinformatics analysis in the inflamed and non-inflamed intestinal mucosa in Crohn\'s disease patients
Background: Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) which despite the unknown details is generally related to genetic, immune system, and environmental factors. In this study, we identify transcriptional signatures in patients with CD and then explain the potential molecular mechanisms in inflamed and non-inflamed intestinal mucosa in these patients. Materials and Me...
متن کاملP157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform
Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis. In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 111 20 شماره
صفحات -
تاریخ انتشار 2004